
N89-10071

Space Station Platform Management System (PMS)
Replanning Using Resource Envelopes

by
Joy Lee Bush, Anna Critchfield, and Audrey Loomis

Computer Sciences Corporation, System Sciences Division

Abstract

One of the responsibilities of the Space Station Platform Management System (PMS) is to
maintain constraint-free, short-term plans for platform and free-flyer activities. Both

the replanning function and the associated constraint-checking function are viewed as

potentially requiring expert system assistance.

This paper describes the PMS Resource Envelope Scheduling System (PRESS) expert
system, which is currently under development. PRESS capabilities will include the
following:

o Plan, replan, and perform constraint checking using resource envelopes
resembling those required for telescience
o Initialize itself using the results of a previous run
o Infer the replanning needs associated with a change in resource availability
o Allow the user to determine the level of interaction (including an advisory

capability) with the system during execution.
o Generate both a graphic timeline and a report as output

PRESS is being developed on an IBM PC/AT using TeKnowledge, Inc.'s M.1 expert system
shell. PRESS activity definitions and constraints are based on those defined for the Cosmic
Background Explorer (COBE) mission scheduled for launch in early 1989.

The development of the Platform Management System (PMS) Resource Envelope
Scheduling System (PRESS) is part of an on-going task contracted to Computer Sciences

Corporation by the Mission Operations Division (code 511) and the Data Systems
Technology Division (code 520) of NASA at Goddard Space Flight Center. PRESS is a
prototype expert system being developed as part of an effort to study the feasibility of
using expert system technology in the Space Station environment. Thus PRESS attempts to
implement some of the functions that have been defined for the PMS, and to use the
"resource envelope" concept that has been developed for Space Station applications but is

not yet fully defined.

II. PMS Functionality

The PMS (as defined in the PMS Definition Document, October 1986) is a software system
that provides operational management services among payloads and platform systems. It
consists of an automated on board segment, the Platform Management

Application(PMA),andagroundsegment,thePlatformManagementGroundApplication
(PMGA).SevenfunctionshavebeendefinedforthePMS:

(1) Short-TermPlanManagement-modify,asnecessary,ashort-termplanin
responseto requestsfromoperators,customers,subsystemsandpayloads;

(2) ScheduleExecution- executetheshorttermplanbycoordinatinginstructionsto
payloadsandsystems;

(3) OperationsMonitoringandActivityLogging- trackandstoredatafor anomaly
investigationandbilling;

(4) Intersystem/PayloadTesting- executetestingasdesiredbyplatformoperators;
(5) ConflictRecognitionandResolution- recognizeandpreventconflictingactivities;
(6) FaultHandling- supervisefaultmanagementandreconfigurationforpayloadsand

systems;and
(7) TransactionChecking- controlmessagestoonboarddestinations.

III. PRESS as a Subset of PMS Functionality

The goals of PRESS are: to research the feasibility of expert system applications in
providing PMS functionality; to use (and therefore help define) the resource envelope
concept as a basis for automatic scheduling; to implement COBE functions as a
proof-of-concept; and to evaluate the suitability of the system development environment
for expansion of this prototype or more complex development/delivery efforts.

PRESS addresses two of the PMS functions. The first of these is the Short-Term Plan
Management function. This function involves the PMGA receiving a plan from the
Platform Support Center, and uplinking appropriate portions to the PMA. The PMGA and

the PMA may receive plan changes requested by operators, customers, subsystems, and
payloads. The second function, Conflict Recognition and Resolution, involves the

monitoring of resource usage, allocation, and margins. Conflicts for resource usage are to
be resolved on a priority basis. This function will be used in deciding whether a given
request may be scheduled. The PMA and the PMGA are required to modify the short-term
schedule while maintaining a conflict-free plan that does not exceed the platform's
resource capabilities or compromise its safety.

Another PMS issue that will be explored via PRESS is how autonomous the

scheduling/rescheduling functions can be made for eventual on board usage. The process of
PRESS development will help to identify specific areas where human intervention is
critical. Functions that can be safely migrated to the on board system will be identified.

PRESS will implement the short-term plan management function and the conflict

recognition and resolution function using specific constraints from the Cosmic Background
Explorer (COBE) spacecraft. PRESS will perform both initial scheduling and replanning
to accommodate updates; will constantly update resource usage with each schedule

modification; and will check constraints and limitations such as safety margins via a table
lookup. PRESS is designed with provision for as much flexibility as possible, so that the
demonstration of the rapid prototype can elicit feedback regarding which approaches
appear the most useful. The prototype under development involves a smaller set of
resources and constraints (primarily uplink and downlink time slots) than will be

encompassed by the PMS, but the application will demonstrate basic functionality in

2

servingasaproof-of-conceptforusingtheexpertsystemapproachinPMSfunctions.
Figure1depictstheplacementof anexpertsystemthatwouldincludethePRESSfunctions
in thePMS.

IV, PRESS Develo.Dment Status

A, final PRESS prototype system is planned for September 1987, with a rapid prototype
demonstration scheduled for early May 1987. Table 1 lists the functions of the final

prototype and indicates whether they will be implemented in the rapid prototype. Briefly,
the rapid prototype will create a new schedule, and will accept scheduling requests either
from a file or manual input. The rapid prototype expects some operator interaction and
provides the advisory capability to suggest alternative time slots. It generates output in
the form of a graphic timeline and a printed report. Feedback following the rapid

prototype demonstration will be critical in determining the direction of further PRESS
development. Section VI discusses PRESS functionality in detail.

V. PRESS Terminoloav

An "activity" is the item being scheduled. It may be anything from a complex scientific
experiment to a single use of a communications link. An activity may thus consist of more
than one event, with each event represented as one envelope. An activity is represented to
PRESS in the form of one or more "resource envelopes".

Each "resource envelope" is equivalent to an event and represents a time period, one or
more resources whose use is required, and a usage level (if appropriate). It is assumed
(for scheduling purposes) that, within an envelope, resource usage is stable. Since
"resource envelope" represents the requests for scheduling that will come to PRESS, we
will refer to them as "request envelopes", in order to avoid confusion with the
representation of the resources themselves.

Examples of "resources" are power, an instrument, a communications link, etc.

The "schedule" or "schedule timeline" is produced by the system to show what activities
have been scheduled within a given time period. PRESS output shows the activities plotted
against the resource used over time, so that the schedule timeline is actually a set of
parallel timelines, one for each resource, with usage periods identified with an activity
identifier.

Vl, PRESS System Descri.Dtion

PRESS will accept user input interactively or from a stored file, and will be capable of
creating a new schedule or modifying an existing schedule. PRESS will generate as its
final product a schedule timeline, available both graphically and in a printed report. Some
of the PRESS functions, described below have yet to be implemented; others exist in the
current form of the rapid prototype. The discussion corresponds to the "and-or" graph of
PRESS functions shown in Figure 2, with some key issues expanded in section VII.

3

¢

,£,3 _

SPACE STATION

Figure 1. Placement of Expert System in PMS

((" C

O1

FUNCTIONS OF FINAL PROTOTYPE

perform initial planning

-- process requests by priorities

perform replanning

accept schedule modification requests as resource envelopes

accept schedule modification requests as resource availability changes

resolve schedule conflicts based on assigned envelope priorities

perform event conflict checking via table look-up

accept multiple envelope requests

change scope of user interaction at operator's discretion

-- provide advice identifying modifications to the resource
envelope requests that would permit successful scheduling

-- provide capability for operator to cease processing before completion

perform input error checking
-- on query responses
-- on time format

generate new schedule timeline output
-- graphic representation

-- report tables

RAPID PROTOTYPE

yes

yes

adds only

yes

no

no

no

no

requires interaction

yes

yes

built-in only
some

no

yes
yes

yes

Table 1. PRESS Functions

CONSUL-

TIMELINES

NEW
SCHEDULE

Figure 2. And-Or Graph of PRESS Functions (1 of 3)

Terminal input

(, (,,

®

_o

c-

>

o

-0
D-

-D

_D

r_
09

c-

0

_o

r_

c_

o

-7
LL

LIJ
rr
O_

0
c-
Q_
c_

C_

¢
"0
c-

c_

"7

1.1.

8

Initialize Scheduling Consultation

Initialization will be performed once for each consultation session. The user must input
information regarding the data input "mode", the location of the initial timeline, and the
required level of interaction. These modes will be active through the entire consultation
and cannot be changed within the same session.

PRESS will load initial files based on user-provided input including the start and end
times for the requested schedule; whether the request is for the creation of a new schedule
or for the replanning of an existing schedule; and the designation of the schedule
immediately preceding the current schedule chronologically. For an initial planning
effort, the schedule timeline will be empty, and resource availability information will be
loaded from the default Resource Availability file. For replanning (modifying an existing
schedule), the user-specified files, including the existing Schedule Timeline, and the

corresponding Resource Availability file, will be loaded.

The user will determine the mode of system execution, including the level of operator
interaction (automatic or nonautomatic) and the request mode (schedule plan/replan or
change in resource availability). If the nonautomatic mode is selected, the user can
specify a number of requests (N), so that, after the automatic processing of every N
requests, control returns to the operator. This allows the examination or graceful
termination of the system before processing of all requests is completed. Also in
nonautomatic mode, an advisory feature is available which allows PRESS to widen the

requested time windows to present some alternatives for an otherwise unschedulable
request. This is discussed in more detail below. The user may also select manual request
input, which requires the user to input request envelopes manually on a one-by-one
basis. Automatic mode executes scheduling without operator interaction and without the
advisory capability.

Incorporate Schedule Updates

Requests for changes in resource availability are satisfied by processing modifications to
the Resource Availability file. Requests for activity scheduling or rescheduling are
satisfied by processing the requests for addition, deletion, or modification of activities in
the form of request envelopes. The output of this function will be the modified Schedule
Timeline and the Resource Availability file.

PRESS will accept input identifying resource availability changes such as equipment
failures. This type of input will include times, if applicable, and the corresponding,
changed resource limit(s). Two special processing steps are required. First, the
available resource level must be updated by inserting the new limits. Second, all
scheduled activities drawing on the changed resource must be reexamined; they may not
still be schedulable.

PRESS will compute new resource availability as a function of the following components:
R = F(O, N, S, C)

where R - new remaining resource availability (can be positive or negative)
O - currently available level of resource

9

N - requested changes of resource availability
S - scheduled activities drawing on the resource
C - other constraints applied to the resource.

A positive or zero value of the remaining resource availability means that the existing
Schedule Timeline is still valid and to complete the consultation, it is only necessary to
update the Resource Availability file. Negative value of the remaining resource
availability means that the existing Schedule Timeline is no longer valid. To resolve the
negative resource availability level, PRESS will identify the affected activities and delete

them from the existing Schedule Timeline, creating a positive resource availability level.
The changes will be reflected in the Resource Availability file, and requests to add those

activities back to the schedule will be generated; they can thus be rescheduled in priority
order up to the limit of the available resources.

PRESS will permit users to request the deletion or modification of a previously scheduled
activity, possibly involving a series of envelopes. PRESS will automatically locate all
envelopes affected by the changes and update the Schedule Timeline and the corresponding
Resource Availability file. Should the modification involve an increased use of resources,
PRESS will locate dependent events on the Schedule Timeline and will try to reschedule all
involved events. The new resource requirements will be validated in the same way as
adding a new request.

In adding a single request envelope or a series of request envelopes comprising a single
activity, the system will first check the list of requests for any related envelopes. All the
related envelopes will then be validated together.

Validation

PRESS will begin the validation process by locating the requested resource(s) in the
Resource Availability file. When these resources are found, PRESS will try to schedule an
activity exercising the maximum duration scheduling and conflict handling concepts (these
will be discussed in detail in Section VII). Once a time slot has been found, the legality of
the activity at that time will be checked against other constraints, such as incompatibility
with any already scheduled activities or orbital events. If no conflicts are encountered,
the request is flagged as successfully scheduled. Otherwise it is passed to the conflict
resolution function.

When running in fully interactive mode, PRESS will execute an advisory feature which
suggests to the user, in cases where no match is found within the initial (i.e.
envelope-specified) time range, what "compromises" can be made in moving the start
time or shortening the duration in order to successfully schedule the request. If the user
agrees to consider the suggested (altered) times, they are added to a list. When the system
has exhausted possible compromises, the user is presented with the list of candidate time
slots and asked to choose one or none. If the user selects none, the request is not scheduled;
otherwise, the selected times are used, and the request is flagged as successfully scheduled.

Figure 3 depicts the situations where this advisory feature can be applied. In Case 1,
PRESS has located an available resource within the requested duration window, but not

10

PRESS

advises

user to

move start

time to T(rs)

T(b) T(e) _D(min)_ ax) I T(: e)
:_.*.._%_i!_!i!i!ii!!i!i!!i!!i!i!ii!ii_ii_i_!:_i_i_i_i_i_iii_iii_i_!_i_!_iiiii_i_i_i_i_i_iiii_i_iii_i_r.-I

!!%.::i:_::_:_::_::_::::_:_:::_:;:_:_:_:;:_:_:_:_i_:_:I..I --

T(rs_ D(min)-J I
D(max)

T(rs) >T(e); T(rs) < T(e) + D(max);

T(re) - T(rs) >= D(min) CASE 1.

PRESS

advises

user to reduce

duration time

to T(re)-T(rs)

T(b) T(e) T(re)

T(rs)l-'--- D(min) ---J I
/ D(max) i

T(b) <= T(rs) <= T(e)

T(re) - T(rs) < D(min) CASE 2.

e) T(e)

advises T I rs) li!_ti/!_i i_i/ii_'_'l_i!ili,,_ I
user to move i D(max) s

start time '------D (m in)----
to T(b')

T(re)-T(b) < D(min); T(re) - D(min) = T(b')

if user T(rs) <= T(b') < T(b); T(b) < T(re) (;ASE 3

does not agree T(b) T_e) T(e)
• __|_

PRESS I ::_::__::_.:::_:_i_i!_i_i!_!!!iiiii_...............:::::::::::::::::::::::::::::::::::::::

user to reduce D(ma×)

duration time t.--- O(min)----_
to D(min')

l'(re)-T(b) < D(min);

T(rs) <= T(b) < T(re)

-- requested start times window
_-- requested minimum duration
!_;;_;_;_;_;_;_;_;I--requested maximum duration

I I available resource time intervalI I °"

T(b) - earliest start time
T(e) - latest start time
D(min) - minimum time duration
D(max) -maximum time duration
T(rs) - resource start time
T(re) - resource end time
T(b') - advised start time
D(min') - advised duration

Figure 3. PRESS Advisory Feature Applications

11

within the requested start time window. PRESS therefore computes the earliest available
start time, which in this case will be the resource availablity start time, and advises the
user that if the start time may be moved, then a candidate scheduling slot has been found.
Case 2 illustrates a possible compromise in altering duration. Case 3 illustrates the

situation in which the possibility of either altering the start time or shortening the
duration may be considered.

If the scheduling attempt is successful, the updates are reflected in the Schedule Timeline

and the Resource Availability file. If the attempt fails, "delete" and "add" requests will be
generated for the lowest priority conflicting activity, and PRESS will choose the next

request for processing. Because "delete" requests have the highest priority, the requested
deletion will be processed before another attempt is made to schedule the activity. This
process will iterate until either the current activity is scheduled or the current activity
becomes the lowest priority activity and is deleted itself. In that case, the request is
marked for no further processing and is included in the final report to the user as an
unscheduled request.

The final Schedule Timeline will be saved and reported to the user at the end of the run.
The user will have the option of reentering the scheduling process before exiting from
PRESS. The Schedule Timeline and the Resource Availability file will be stored along with
continuity information regarding how the time period for the current schedule fits with

other scheduled runs. Graphics representing the Schedule Timeline will be displayed
along with an option to display the resource timeline and continuity information. The user
will be provided with information on any requests that could not be satisfied and will be
given an opportunity to place any replanning requests for the scheduled time. A file
containing a printable report will be generated at the user's request.

VII. Key Issues Addressed by PRESS

Request Envelope Types

Activity scheduling requests will be typed according to the following: "delete" a currently
scheduled event; "modify" a currently scheduled event; and "add" an event not yet
scheduled. "Modify" requests are divided into "modify-l", a request that involves no

increase of any resource utilization and a decrease in the use of at least one resource, and
"modify-2", a request involving either the same or an increased level of resource
utilization.

Priority

A two-step scheme is envisioned for PRESS. Its intent is to minimize internal

rescheduling/backtracking by ensuring that PRESS is always doing the most important job
of which it is aware. Priority conflicts will occur primarily when a high-priority
activity must be added to a previously prepared schedule.

The first criterion for determining the priority of an input request is the activity request
type. Before assigning priority, PRESS must examine "modify" requests to classify them
as either "modify-l" or "modify-2". "Delete" and "modify-1" requests, processed in any

12

order,arePRESStop-priorityactions,becausetheyreturnresourcesto thesystem.
"Add"and"modify-2"requestsareconsideredwhentherearenooutstanding"delete"and
"modify-1"requests.Theirprioritiesareassumedtobesuppliedexternally.Thechosen
requestismarkedafterbeingprocessedbythesystem,whethersuccessfullyscheduledor
not,sothatitwillbe ignoredwhenthenextrequestischosen.

Maximum Duration Scheduling

Each envelope submitted for scheduling will have an associated start time window
(earliest and latest start time) and duration window (minimum and maximum duration).
First, PRESS will attempt to schedule the earliest possible start time within the start
time window and the maximum duration. If this attempt fails, PRESS will try to find the
earliest start time and the maximum duration allowed by the resources' availability, still
within the requested time window. Figure 4 illustrates possible ways in which an

optimum time slot may be found.

This strategy tends to minimize backtracking by assuring that an envelope is never
considered unschedulable because the wrong subset of acceptable time was chosen for the

envelope. The strategy also biases scheduling in favor of high-priority activities, by
assigning them the maximum amount of available time. (This scheduling strategy could be
refined by giving the conflict resolution function awareness that a low priority activity
might be scheduled by decreasing the duration of a conflicting high priority activity).

Multiple Envelopes

One of the key issues yet to be handled is the scheduling of multiple-envelope requests
(i.e. activities composed of more than one event, and thus represented by more than one
envelope). Scheduling a multiple-envelope activity imposes additional constraints on the
system due to the need to schedule all of the activity component events, in the proper
sequence. The scheduled times of the multiple-envelopes may involve mutual
interdependencies (e.g., no time gaps permitted between envelopes, or specified time gaps
required between envelopes). The system must be able to recognize an envelope as part of
a series representing a single activity, both on input for scheduling and on making any
schedule adjustments. When, after scheduling, any envelope in a series is adjusted, all
other envelopes must also be reconsidered. We have not yet finalized an approach to
handling this issue, but we make the following preliminary assumptions: requested time
windows in a multiple envelope activity must contain no gaps, and the envelopes must be
scheduled back-to-back chronologically. The approach we will try initially will involve
the generation of "delete" and "add" requests for the entire series. We believe,
particularly for this issue, that it is crucial to emphasize the use of frequent rapid
prototyping and expert input in order to better define and refine the optimal correlation
between data representation, user interface, and the PRESS knowledge base.

Constraint Checking

Envelopes active at the same time may conflict in one of two ways: they may

13

First choice

found:

earliest time

of start

window and

maximum

duration

T(b) T(e)

T(rs) I--"-- D(min) ----I I
/ D(max) I

T(rs)=T(b)-n; n >=0

T(re)>=T(b)+D(max)

T(re)

Acceptable
time found:

within requested
start window

and maximum

duration

T(b) T(e)

T(rs) I_'-" D(m in) -"-J I

/ D(max) I

T(b) < T(rs) <= T(e)

T(re)>=T(rs)+D(max)

T(re)

Acceptable
time found:

within requested
start window
and duration

window

T(b) T(e)

T(rs)_----- D(min) -_J T(re)[

/ D(max) I

T(b) < T(rs) <= T(e)

T(rs) + D(min) <= T(re) <= T(rs)+D(max)

Acceptable
time found:

within requested
start window

and duration

window

!
iii

T(rs)

T(b) T(e)

t._._. D(mini _ T<re) ' I

/ D(max) !

T(rs) <= T(b) < T(re)

T(re) >= T(b)+D(min)

-- requested start times window
-- requested minimum duration
-- requested maximum duration

I l available resource time intervall l'"

T(b) - earliest start time
T(e) - latest start time
D(min) - minimum time duration
D(max) -maximum time duration
T(rs) - resource start time
T(re) - resource end time

Figure 4. Optimum Time Slots with Maximum Duration Approach

14

oversubscribe available resources or they may require incompatible operating conditions.

The first type of conflict is handled via the maximum duration scheduling approach.
Operating condition constraint violations (e.g., incompatible experiments) will be
checked, possibly with a combination of table lookup and rules in the knowledge base. We
recognize that contextual information is critical for performance of this function.

VIII. PRESS Input and Output

PRESS will expect scheduling requests in the form of request (resource) envelopes,
where each envelope represents an event, and one or more events comprise an activity.
Figure 5(a) depicts the request envelope definition as it is input by the user and with the
additional fields added for internal use by PRESS. The resource envelope includes a list of
resource/usage-level pairs. The user will have the choice of file or manual input for
scheduling requests. If the former is selected, PRESS will accept an ASCII file consisting
of envelopes in list form with the required fields separated by commas. If manual input is
chosen, the user must type in the envelope, when prompted by the system.

Other input required by PRESS includes a file defining the available resources and, for the
replanning function, files containing the existing Schedule Timeline and the corresponding
Resource Availability file.

PRESS represents each resource in list form. Figure 5(b) depicts the fields contained in
a resource definition. PRESS dynamically creates and destroys resource representation
lists. For an initial plan, PRESS loads a default Resource Availability file. For a replan,
PRESS loads the Resource Availability file corresponding to the Schedule Timeline being
considered.

PRESS outputs the result of the scheduling activity in the form of a graphic timeline and a
printed report. PRESS generates the timeline dynamically, using information from an
output file containing the scheduled request envelopes, annotated with the times actually
scheduled. This same file is used to generate the printed report. The Resource
Availability file is output containing the resource representation lists that match the
scheduled activities.

IX. PRESS Development Environment

M.1 by TeKnowledge was chosen because it appeared to have many of the capabilities
desired at the start of this task. These include the capability of easy interface with a
language outside of the system domain, in this case, C; both forward and backward chaining
capability; flexible control structures; provision for use of meta-knowledge; data
representation which include a list structure; and built-in explanation facilities. In
addition, the system is already into its third release and is well supported.

We are unable to provide an accurate evaluation of the M.1 shell at this point in
development, but a full evaluation of the shell for the PRESS application will be part of
our final report.

The M.1 software runs on an IBM PC/AT with a Video 7 EGA graphics board and an NEC
Multisync color monitor. The operating system is IBM PC DOS, version 3.10.

15

o')

Fields
contained

in
user's

rec lest

Fi{ Ids
added

by lESS

I

(a)

ENVELOPE-ID

EARLIEST START TIME

LATEST START TIME

MINIMUM TIME DURATION

MAXIMUM TIME DURATION

REQUESTED RESOURCES:
RESOURCE 1

RESOURCE k

RESOURCE n

STATION-ID

TAPE DUMP INDICATOR

REQUEST TYPE (delete, modify, or add)

PREVIOUS ENVELOPE-ID (or nil)

FOLLOWING ENVELOPE-ID (or nil)

REQUESTED PRIORITY

ASSIGNED PRIORITY (based on request type)

STATE OF REQUEST (unsched, sched or proc)

SCHEDULED START TIME

SCHEDULED END TIME

(b)

RESOURCE-ID

START TIME

END TIME

STATION-ID

RESOURCE STATE (avail. or not avail.)

other attributes
|

ENVELOPE-ID (or nil)

Figure 5.

Request Envelope and Resource Availability Representation

X, Comments

Several areas requiring particular attention have come up during the course of this

project. The question of the nature of the user interface remains, especially in terms of
the most convenient and useful input and output. Some new information on this issue is
expected at the time of the rapid prototype demonstration, but the most informed feedback
will arise only when PRESS is tested by operators in an approximate real-life situation.
Another side of the user interface question is the level of human interaction required.
Since PMS aims include the eventual migration of software from ground to on-board, we

are attempting to give this issue some attention. Our initial response has been to make the

system as flexible as possible by allowing the level of human interaction to be specified at
the start of a consultation. Currently, if the fully automatic mode is chosen, PRESS will
be unable to extend any additional flexibility in time-slot scheduling beyond that provided
in the original request envelope. PRESS may help to identify types of requests to which
automatic scheduling option may be applied. This function requires additional knowledge
allowing the system to choose, on its own, from a list of candidate schedule opportunities.

Two of the most difficult technical issues to be solved by PRESS are multiple-envelope

handling and constraint checking. These issues have been only superficially discussed
here because our approach to solving them has not yet been fully defined. Both of these
areas will require further definition by area experts, and it is hoped that the PRESS

prototype will help to elicit that information.

Acknowledgements

The authors wish to acknowledge Ed Lewis (GSFC code 520), Dolly Perkins (GSFC code
520), Steve Tompkins (GSFC code 511), Steve Wadding (GSFC code 511), and Larry
Zeigenfuss (GSFC code 511) for their encouragement and helpful discussions. This work
was funded by the National Aeronautics and Space Administration, Goddard Space Flight
Center for the Mission Operations Division (GSFC code 510) and the Data Systems
Technology Division (GSFC code 520) under task assignment 319000.

References

"The Platform Management System Definition Document", GSFC, October, 1986

"Expert System Feasibility Study Report", Computer Sciences Corporation, September,
1986
"The PRESS Functional Definition" (initial input), Computer Sciences Corporation,

February, 1987

17

El

,,.14 `¸

-n

e-
/

rn
X ---

-_ (/)
(1) 0

mll

f.DO
"_ ::3

(1) ----

(/) t.Q
Z3
0
(/)
mll

(/)

(I)
0
mll

0
:3

